§6.4 Trigonometric Identities

Objectives

1. Use Algebra to Simplify Trigonometric Expressions.
2. Establish Identities.
Two functions f and g are said to be identically equal if

$$f(x) = g(x)$$

for every value of x for which both functions are defined. Such an equation is referred to as an identity. An equation that is not an identity is called a conditional equation.
§6.4 Trigonometric Identities

Some Familiar Identities

Quotient Identities

\[
\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}, \quad \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}
\]

Reciprocal Identities

\[
csc(\theta) = \frac{1}{\sin(\theta)}, \quad \sec(\theta) = \frac{1}{\cos(\theta)}, \quad \cot(\theta) = \frac{1}{\tan(\theta)}
\]

Pythagorean Identities

\[
\sin^2(\theta) + \cos^2(\theta) = 1, \quad \tan^2(\theta) + 1 = \sec^2(\theta), \quad \cot^2(\theta) + 1 = \csc^2(\theta)
\]

Even-Odd Identities

\[
\sin(-\theta) = -\sin(\theta), \quad \cos(-\theta) = \cos(\theta), \quad \tan(-\theta) = -\tan(\theta)
\]

\[
csc(-\theta) = -\csc(\theta), \quad \sec(-\theta) = \sec(\theta), \quad \cot(-\theta) = -\cot(\theta)
\]
1. Use Algebra to Simplify Trigonometric Expressions

(a) Simplify \(\tan(\theta) \) by rewriting each trigonometric function in terms of sine and cosine functions.

\[
\frac{\tan(\theta)}{\sec(\theta)} = \frac{\sin(\theta)}{\cos(\theta)} \cdot \frac{1}{\cos(\theta)}
\]

\[
= \frac{\sin(\theta)}{\cos^2(\theta)}
\]

\[
= \sin^2(\theta) \frac{\sin(\theta)}{\sin(\theta)}
\]

\[
= \frac{\sin^2(\theta)}{\sin(\theta)}
\]

\[
= 1 - \cos^2(\theta) \frac{1}{\sin(\theta)}
\]

This is "simplified"! Stop here!!!
§6.4 Trigonometric Identities

1. Use Algebra to Simplify Trigonometric Expressions

(b) Show that \[\frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{1 - \cos(\theta)}{\sin(\theta)} \] by multiplying the numerator and denominator by \(1 - \cos(\theta)\).

\[
\sqrt{\frac{\sin(\theta)}{1 + \cos(\theta)}} = \frac{\sin(\theta)}{1 + \cos(\theta)} \left[\frac{1 - \cos(\theta)}{1 - \cos(\theta)} \right]
\]

\[
= \frac{\sin(\theta)(1 - \cos(\theta))}{1 - \cos^2(\theta)}
\]

\[
= \frac{\sin(\theta)(1 - \cos(\theta))}{\sin^2(\theta)}
\]

\[
\frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{1 - \cos(\theta)}{\sin(\theta)} \quad \text{ } \triangleq \text{QED}
\]
(c) Simplify \(\frac{1}{1 - \sin(u)} + \frac{1}{1 + \sin(u)} \) by rewriting the expression over a common denominator.

\[
\frac{1}{1 - \sin(u)} + \frac{1}{1 + \sin(u)} = \frac{1}{1 - \sin(u)} \left(\frac{1 + \sin(u)}{1 + \sin(u)} \right) + \frac{1}{1 + \sin(u)} \left(\frac{1 - \sin(u)}{1 - \sin(u)} \right)
\]

\[
= \frac{1 + \sin(u) + 1 - \sin(u)}{(1 - \sin(u))(1 + \sin(u))}
\]

\[
= \frac{2}{1 - \sin^2(u)}
\]

\[
= \frac{1}{\cos^2(u)}
\]
§6.4 Trigonometric Identities

1. Use Algebra to Simplify Trigonometric Expressions

(d) Simplify \(\frac{1 - \cos^2(v)}{\sin(v) + \cos(v)\sin(v)} \) by factoring.

\[
\frac{1 - \cos^2(v)}{\sin(v) + \cos^2(v)\sin(v)} = \frac{(1 - \cos(v))(1 + \cos(v))}{\sin(v)(1 + \cos(v))} = \frac{1 - \cos(v)}{\sin(v)} \quad \text{OK to stop here!}
\]
Establish the identity: \(\sin(\theta)(\cot(\theta) + \tan(\theta)) = \sec(\theta) \)

\[
\begin{align*}
\sin(\theta) \left[\cot(\theta) + \tan(\theta) \right] &= \sin(\theta) \left[\frac{\cos(\theta)}{\sin(\theta)} + \frac{\sin(\theta)}{\cos(\theta)} \right] \\
&= \sin(\theta) \left[\frac{\cos^2(\theta) + \sin^2(\theta)}{\sin(\theta)\cos(\theta)} \right] \\
&= \sin(\theta) \left[\frac{1}{\sin(\theta)\cos(\theta)} \right] \\
&= \frac{1}{\cos(\theta)} \\
&= \sec(\theta), \text{ Q.E.D.}
\end{align*}
\]
Establish the identity: \[\csc(\theta) - \cot(\theta) = \frac{\sin(\theta)}{1 + \cos(\theta)} \]

\[
\begin{align*}
\csc(\theta) - \cot(\theta) &= \frac{1}{\sin(\theta)} - \frac{\cos(\theta)}{\sin(\theta)} \\
&= \frac{1 - \cos(\theta)}{\sin(\theta)} \left[\frac{1 + \cos(\theta)}{1 + \cos(\theta)} \right] \\
&= \frac{(1 - \cos(\theta))(1 + \cos(\theta))}{\sin(\theta)(1 + \cos(\theta))} \\
&= \frac{1 - \cos^2(\theta)}{\sin(\theta)(1 + \cos(\theta))} \\
&= \frac{\sin^2(\theta)}{\sin(\theta)(1 + \cos(\theta))} \\
&= \frac{\sin(\theta)}{1 + \cos(\theta)} \\
& \quad \text{(Q.E.D.)}
\end{align*}
\]
2. Establish Identities

Establish the identity: \(\frac{\sin^2(\theta) - \tan(\theta)}{\cos^2(\theta) - \cot(\theta)} = \tan^2(\theta) \)

\[
\frac{\sin^2(\theta) - \tan(\theta)}{\cos^2(\theta) - \cot(\theta)} = \frac{\sin^2(\theta) - \frac{\sin(\theta)}{\cos(\theta)}}{\cos^2(\theta) - \frac{\cos(\theta)}{\sin(\theta)}}
\]

\[
= \frac{\sin(\theta) \left[\sin(\theta) - \frac{1}{\cos(\theta)} \right]}{\cos(\theta) \left[\cos(\theta) - \frac{1}{\sin(\theta)} \right]}
\]

\[
= \tan(\theta) \left[\frac{\sin(\theta) \cos(\theta) - 1}{\cos(\theta)} \right] \cdot \left[\frac{\sin(\theta)}{\sin(\theta) \cos(\theta) - 1} \right]
\]

\[
= \tan(\theta) \left[\frac{\sin(\theta)}{\cos(\theta)} \right] \cdot \left[\frac{1}{\tan(\theta)} \right]
\]

\[
= \tan^2(\theta)
\]
Establish the identity:

\[
\frac{\cos(\theta)}{1 - \sin(\theta)} = \frac{1 + \sin(\theta)}{\cos(\theta)}
\]

\[
\begin{align*}
\frac{\cos(\theta)}{1 - \sin(\theta)} &= \frac{\cos(\theta)}{1 - \sin(\theta)} \cdot \frac{1 + \sin(\theta)}{1 + \sin(\theta)} \\
&= \frac{\cos(\theta) (1 + \sin(\theta))}{1 - \sin^2(\theta)} \\
&= \frac{\cos(\theta) (1 + \sin(\theta))}{\cos^2(\theta)} \\
&= \frac{1 + \sin(\theta)}{\cos(\theta)} \quad \text{(Q.E.D.)}
\end{align*}
\]
§6.4 Trigonometric Identities

2. Establish Identities

Establish the identity: \(\cot^2(\theta) = \frac{\csc(\theta) - \sin(\theta)}{\sin(\theta)} \)

\[
\frac{\csc(\theta) - \sin(\theta)}{\sin(\theta)} = \frac{1}{\sin(\theta)} - \frac{\sin(\theta)}{\sin(\theta)}
\]

\[
= 1 - \frac{\sin^2(\theta)}{\sin^2(\theta)}
\]

\[
= \frac{\cos^2(\theta)}{\sin^2(\theta)}
\]

\[
= \cot^2(\theta), \quad \text{QED}
\]
Establish the identity: \(1 - \csc(\theta)\sin^3(\theta) = \cos^2(\theta)\)

\[
1 - \csc(\theta)\sin^3(\theta) = 1 - \frac{1}{\sin(\theta)} \sin^3(\theta) \\
= 1 - \sin^2(\theta) \\
= \cos^2(\theta), \quad \text{QED}
\]
2. Establish Identities

Guidelines for Establishing Identities

1. It is almost always preferable to start with the side containing the more complicated expression.
2. Rewrite sums or differences of quotients as a single quotient.
3. Sometimes rewriting one side in terms of sines and cosines only will help.
4. Always keep your goal in mind. As you manipulate one side of the expression, you must keep in mind the form of the expression on the other side.